【Java小工匠聊密码学】--消息摘要--SHA3算法

简介: 1、SHA3概述1.1 SHA3简介由于近年来对传统常用Hash 函数如MD4、MD5、SHA0、SHA1、RIPENMD 等的成功攻击,美国国家标准技术研究所(NIST)在2005年、2006年分别举行了2届密码Hash 研讨会;同时于2007年正式宣布在全球范围内征集新的下一代密码Hash算法,举行SHA-3竞赛·新的Hash算法将被称为SHA-3,并且作为新的安全Hash标准,增强现有的FIPS 180-2标准。

1、SHA3概述

1.1 SHA3简介

由于近年来对传统常用Hash 函数如MD4、MD5、SHA0、SHA1、RIPENMD 等的成功攻击,美国国家标准技术研究所(NIST)在2005年、2006年分别举行了2届密码Hash 研讨会;同时于2007年正式宣布在全球范围内征集新的下一代密码Hash算法,举行SHA-3竞赛·新的Hash算法将被称为SHA-3,并且作为新的安全Hash标准,增强现有的FIPS 180-2标准。算法提交已于2008年10月结束,NIST 将分别于2009年和2010年举行2轮会议,通过2轮的筛选选出进入最终轮(final round)的算法,最后将在2012年公布获胜算法。公开竞赛的整个进程仿照高级加密标准AES 的征集过程。2012年10月2日,Keccak被选为NIST竞赛的胜利者, 成为SHA-3.。

1.2 SHA3作者

Keccak算法由意法[半导体] 的Guido Bertoni、Joan Daemen(AES算法合作者)和Gilles Van Assche,以及恩智浦半导体的Michaël Peeters联合开发。NIST计算机安全专家Tim Polk说,Keccak的优势在于它与SHA-2设计上存在极大差别,适用于SHA-2的攻击方法将不能作用于Keccak。

1.3 海绵引擎

Keccak的海绵结构中,输入的数据在进行填充后,要经过吸收阶段和挤出阶段,最终生成输出的散列值。
“海绵结构”这个名字听上去有点怪,请大家想象一下将一块海绵泡在水里吸水,然后再将里面的水挤出来的情形。同样地,Keccak 的海绵结构是先将输入的消息吸收到内部状态中,然后再根据内部状态挤出相应的散列值。

1.4 实现难度

Keccak采用了创新的的“海绵引擎”散列消息文本。它是快速的,在英特尔酷睿2处理器下的平均速度为12.5周期每字节。它设计简单,方便硬件实现。

1.5 防攻击

Keccak已可以抵御最小的复杂度为2n的攻击,其中N为散列的大小。它具有广泛的安全边际。至目前为止,第三方密码分析已经显示出Keccak没有严重的弱点。

2、SHA3 算法实现

package lzf.cipher.bc;

import java.nio.charset.Charset;

import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.digests.SHA3Digest;
import org.bouncycastle.crypto.digests.SHAKEDigest;
import org.bouncycastle.util.encoders.Hex;

/**
 * @author Java 小工匠
 */
public class BCSha3Utils {

    // SHA3-224 算法
    public static String sha3224(byte[] bytes) {
        Digest digest = new SHA3Digest(224);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHA3-256 算法
    public static String sha3256(byte[] bytes) {
        Digest digest = new SHA3Digest(256);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHA3-384 算法
    public static String sha3384(byte[] bytes) {
        Digest digest = new SHA3Digest(384);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHA3-512 算法
    public static String sha3512(byte[] bytes) {
        Digest digest = new SHA3Digest(512);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHAKE-128 算法
    public static String shake128(byte[] bytes) {
        Digest digest = new SHAKEDigest(128);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHAKE-256 算法
    public static String shake256(byte[] bytes) {
        Digest digest = new SHAKEDigest(256);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    public static void main(String[] args) {
        byte[] bytes = "java小工匠".getBytes(Charset.forName("UTF-8"));
        String sha3224 = sha3224(bytes);
        System.out.println("sha3-224:" + sha3224 + ",lengh=" + sha3224.length());
        String sha3256 = sha3256(bytes);
        System.out.println("sha3-256:" + sha3256 + ",lengh=" + sha3256.length());
        String sha3384 = sha3384(bytes);
        System.out.println("sha3-384:" + sha3384 + ",lengh=" + sha3384.length());
        String sha3512 = sha3512(bytes);
        System.out.println("sha3-512:" + sha3512 + ",lengh=" + sha3512.length());
        String shake128 = shake128(bytes);
        System.out.println("shake-128:" + shake128 + ",lengh=" + shake128.length());
        String shake256 = shake256(bytes);
        System.out.println("shake-256:" + shake256 + ",lengh=" + shake256.length());
    }
}

如果读完觉得有收获的话,欢迎点赞、关注、加公众号【小工匠技术圈】

个人公众号,欢迎关注,查阅更多精彩历史!

image
相关文章
|
4天前
|
算法 安全 Java
性能工具之 JMeter 自定义 Java Sampler 支持国密 SM2 算法
【4月更文挑战第28天】性能工具之 JMeter 自定义 Java Sampler 支持国密 SM2 算法
32 1
性能工具之 JMeter 自定义 Java Sampler 支持国密 SM2 算法
|
3天前
|
缓存 算法 Java
数据结构~缓存淘汰算法--LRU算法(Java的俩种实现方式,万字解析
数据结构~缓存淘汰算法--LRU算法(Java的俩种实现方式,万字解析
|
3天前
|
NoSQL 算法 Java
【redis源码学习】持久化机制,java程序员面试算法宝典pdf
【redis源码学习】持久化机制,java程序员面试算法宝典pdf
|
4天前
|
设计模式 算法 Java
[设计模式Java实现附plantuml源码~行为型]定义算法的框架——模板方法模式
[设计模式Java实现附plantuml源码~行为型]定义算法的框架——模板方法模式
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
1天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
19 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
2天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
4天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
4天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
9 1
|
4天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。